Someone say that 167588402882520529579353108764873470755823697 is the smallest positive integer k such that all digit of 1989k are the same.
Do you agree?
數學資料庫 (http://www.mathdb.org/ 及 http://eng.mathdb.org/)是香港其中一個最大型的數學網站,由一班來自香港各間大學及美國多間大學的數學系、物理系、精算系、建築系、電子工程系的學生建立。數學資料庫旨在於網上提供豐富的數學資源。我們上載了不同種類和數學相關的教學資料,是同學們一個好的參考網站。
1 則留言:
1989k = 9*13*17*k =r(111...1), where r between 1-9
Numbers divisible by 13
alternating sum of three-digit, if it is divisible by 13, then the number is divisible by 13.
so 111,111 is divisible by 13 as (111)-(111)=0
Numbers divisible by 17
alternating sums of 8-digit groups!
so 1...16-digit...1 is divisible by 17.
so 1....48-digit...1 is the smallest integer of this form which can be divisible by both 13 and 17.
and so the smallest positive integer k s.t. all digit of 1989k are the same = 9*13*17*k = (r...48 digit...r)
if r=1, 48 != 0 mod 9, so not the answer.
if r=2, 96 !=0 mod 9, so not the answer.
if r=3, 144 = 0 mod 9, 3...48digit...3 is the required answer!
the given k = 167588402882520529579353108764873470755823697 have 45 digits,
16758
8402882520
5295793531
0876487347
0755823697
so this k times 1989 will have 48 digits.
If the question guarantee this k times 1989 would produces a number with all digit are the same, then i can 100% agree.
張貼留言